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ABSTRACT 

Systems biology is sometimes presented as providing a superior approach to 
the problem of biological complexity. Its use of ‘unbiased’ methods and formal 
quantitative tools might lead to the impression that the human factor is 
effectively eliminated. However, a closer look reveals that this impression is 
misguided. Systems biologists cannot simply assemble molecular information 
and compute biological behavior. Instead, systems biology’s main contribution 
is to accelerate the discovery of mechanisms by applying models as heuristic 
tools. These models rely on a variety of idealizing and simplifying assumptions 
in order to be efficient for this purpose. The strategies of systems biologists are 
similar to those of experimentalists in that they attempt to reduce the 
complexity of the discovery process. Analyzing and comparing these strategies, 
or ‘heuristics’, reveals the importance of the human factor in computational 
approaches and helps to situate systems biology within the epistemic landscape 
of the life sciences. 
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1. Introduction 

There exists a widespread narrative about the relationship of systems biology 
to the traditional experimental approaches of molecular biology and cell 
biology. According to this narrative, the traditional approaches have followed 
an overly “reductionistic” strategy by looking at individual parts in isolation, 
whereas systems biology succeeds in assembling information about all relevant 
molecular players and translating this information into a  “holistic” 
understanding of the system. This success is expected from the application of 
computational methods to integrate large and heterogeneous data sets and to 
simulate biological behavior: 
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Perhaps the most important consequence of the Human Genome 
Project is that it is pushing scientists toward a new view of biology—what 
we call the systems approach. Systems biology does not investigate 
individual genes or proteins one at a time, as has been the highly 
successful mode of biology for the past 30 years. Rather, it investigates 
the behavior and relationships of all of the elements in a particular 
biological system while it is functioning. These data can then be 
integrated, graphically displayed, and ultimately modeled 
computationally. (Ideker et al., 2001, p. 343) 

The implicit criticism of the traditional approach is not simply that it is slow or 
inefficient, but that it is conceptually misguided: It underestimates the 
complexity of living systems and overlooks relevant phenomena by 
investigating biological processes at the wrong level. 

Biological systems are extremely complex and have emergent properties 
that cannot be explained, or even predicted, by studying their individual 
parts. The reductionist approach—although successful in the early days 
of molecular biology—underestimates this complexity and therefore has 
an increasingly detrimental influence on many areas of biomedical 
research, including drug discovery and vaccine development. (van 
Regenmortel, 2004, p. 1016) 

Systems biology is presented as superior and less biased for several reasons: 
First, it takes into account all parts of the system instead of focusing on 
individual components. Second, it applies sophisticated statistical methods to 
analyze and integrate data instead of relying on subjective judgement. And 
third, it uses formal and quantitative models to simulate biological processes 
instead of the intuitive reasoning strategies of experimentalists. All of this 
suggests that systems biology manages to effectively eliminate the human 
factor from biological research. 

In this contribution I want to develop a more balanced perspective on the 
relationship between systems biology and the traditional approach. I argue that 
systems biology does indeed manage to overcome some of the latter's biases, 
but it can develop productive research strategies only by itself introducing 
potential biases. Computational methods in biology will not in the foreseeable 
future gain the character of the robust, standardized, and algorithmic methods 
that may be found in some areas of engineering. Instead, they are only as good 
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as the assumptions that they are based on and thus dependent on our current 
limitations in scientific knowledge and cognitive capacity. 

2. Scientific Discovery as Problem Solving 

In order to analyze different research strategies in biology, I will start by 
introducing the concept of “heuristics.” I understand heuristics, in line with 
scholars such as Herbert Simon and William Wimsatt, as problem-solving 
strategies that work by reducing the complexity of a given research task (e.g. 
Simon, 1962; Wimsatt, 2007). Within this framework scientific discovery is 
understood as a search through a problem space. This space is determined by 
the structure of the research problem and by concepts and parameters 
specifying possible solutions that usually stem from background theories and 
beliefs (Resnik, 1997). If the problem space is small, one may consider to use 
random search to test all candidate solutions, but in more complex situations 
this is not an efficient strategy. Heuristics are rules of thumb that facilitate the 
discovery process by restricting or directing the search through the problem 
space. They introduce specific assumptions about the research problem that 
may or may not be justified. Consequently, what makes these strategies 
efficient at the same time creates the risk of underestimating the complexity of 
the problem. Heuristics make the search selective, raising its efficiency over 
blind trial-and-error search, at the cost of introducing bias. 

In biology a typical research task consists in explaining a phenomenon by 
identifying the underlying causal factors and by showing how these factors 
interact to bring about the phenomenon. There are thus two different aspects 
that potentially contribute to the complexity of this scientific task: determining 
the causal structure and figuring out how it works. Heuristic strategies can be 
used to address both of these aspects. 

Heuristics of search work by restricting the set of possible components, 
interactions, or modes of organization, thereby guiding the discovery of the 
underlying causal structure. But even if the structure and internal organization 
of a system are fully known, it can be difficult to understand its behavior due to 
its intrinsic complexity. Only in very few situations there is a straightforward 
algorithm that can be applied to ‘solve’ it. In most cases one has to approach 
understanding via intermediate steps that transform the initial problem into a 
more manageable one. Here, heuristic strategies often work by introducing 
idealizations. The roles of intrinsic complexity and idealization gain 
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importance in systems biology. In traditional experimental biology, by 
contrast, the emphasis is on heuristics of search. However, the distinction 
between the two kinds of heuristics is not as clear-cut, nor is their assignment 
to different scientific approaches. Indeed, as I will argue in the following 
section, large parts of systems biology can be understood as contributing to the 
problem of search by exploiting the power of computational models as 
heuristic tools (see also MacLeod, 2015). 

3. Heuristic Strategies in Experimental and Computational Approaches 

According to the systems biologists I quoted in the introduction, traditional 
molecular biology has been useful in determining the parts of living systems, 
but an entirely different approach is needed when it comes to putting those 
parts back together in order to understand systemic behavior. This view 
presupposes that our current knowledge about the causal structures 
underlying biological phenomena is sufficiently reliable and complete. 
However, in spite of increasing amounts of data accumulated at the level of 
DNA, RNA and protein, of concentrations of metabolites, of epigenetic 
modifications etc., most areas in molecular biology are lacking knowledge 
about the causally relevant factors. At the same time many of the 
measurements, despite being quantitative, often lack in both precision and 
accuracy. Moreover, the measurements that are available from experiments are 
rarely of the kind that can immediately be used for simulating the dynamics of a 
system in a computational model. Accordingly, rather than trying to 
understand the behavior of systems whose internal structures are largely 
known, what many systems biologists do in practice is to use models to test 
hypotheses about underlying structure. The following quote nicely makes this 
point: 

We believe that modeling these important biological systems cannot 
wait until all the rates are reliably measured, or even until all the various 
players and interactions are discovered. Indeed, the most important role 
of modeling is to identify missing pieces of the puzzle. It is as useful to 
falsify models—identifying which features of the observed behavior cannot 
be explained by the experimentalists’ current interaction network—as it is 
to successfully reproduce known results. (Brown et al., 2004, p. 185) 
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One of the main roles of computational models in systems biology is thus to 
facilitate the discovery of mechanisms. Modeling can be used as an additional 
tool to restrict the set of possible causal structures underlying a particular 
phenomenon. 

3.1. The traditional approach 

Before taking a closer look at how heuristic strategies are applied in systems 
biology, I will briefly characterize the research strategies of the traditional 
experimental approach. Obviously, there would be a lot to say about strategies 
of experimental design and the material aspects of scientific practice in 
general, but for the sake of comparison I will focus on cognitive strategies of 
experimental approaches in molecular and cell biology and do not claim to be 
exhaustive in any way. As I have argued in detail elsewhere, the traditional 
experimental approach relies on some general heuristic strategies that are 
characteristic of mechanistic science in general, but also on more specific ones 
that are rooted in the historical development of molecular biology (Gross, 
2013). Among the more general strategies is the heuristic of decomposition 
and localization (Bechtel & Richardson, 1993) that simplifies the task of 
understanding a complex phenomenon by conceiving it as produced by simpler 
activities that are carried out by structurally defined components of the system. 
Biological systems are thus approached as consisting of quasi-independent 
modules, which obviously relies on strong assumptions about biological 
organization. Furthermore, experimentalists typically assume that the 
organization of a mechanism is relatively simple. Mechanisms are expected to 
consist of a manageable number of components and to be organized in a largely 
sequential fashion. William Bechtel has argued that the expectation of 
sequential organization is fundamentally linked to the human cognitive setup: 

The assumption of sequential order reflects the practices of many 
scientists, who attempt to envisage sequentially the qualitative changes 
occurring in the mechanisms they investigate. More fundamentally, this 
reflects the sequential nature of human mental processes. We perceive 
successive states of the world, and in imagination we redeploy 
perceptual processes (…) and so imagine changes sequentially. (Bechtel, 
2011, p. 536) 
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But experimental biologists focus on sequential organization also because it 
resonates with a general perspective of biological processes as processes of 
information transfer. Here I do not primarily have in mind the conception of 
encoded information that is transferred from DNA to protein during the 
process of gene expression, but rather the more general idea of signals being 
transferred by a chain of molecular events.  

Figure 1: Schematic representation of a signal transduction pathway. Source: 
Downward (2001). 
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Figure 1 shows a particularly clear example of this, representing how an 
extracellular signal is transmitted to the nucleus in what biologists call 'signal 
transduction.' Apart from illustrating sequential organization, two additional 
aspects become clear from the style of representation of this diagram. First, 
even though it represents a chain of chemical reactions, it does not spell out in 
detail how these reactions proceed and influence each other. The explanatory 
burden lies in establishing the identity and order of the links in the chain. 
Principles of biochemistry may be invoked for the explanation of individual 
reaction steps, phosphorylation, inhibition, etc., but not for the dynamics of 
the overall process. The assumption that the transmission of the signal is 
largely unrestricted by chemical principles allows biologists to investigate the 
individual links in the sequence independently from each other. A second 
observation is that in order to explain the process, it is sufficient to represent it 
as if it were build up of interactions of individual molecules. Even though 
scientists are aware that the number of molecules engaging in each of the steps 
represented in the diagram is potentially very large, this kind of information is 
not needed in order to understand the mechanism. In general, they do not 
expect any non-trivial population effects in molecular processes. In summary, 
there are several specific assumptions that experimental biologists make about 
the expected types of organization which together significantly reduce the 
complexity of their research task and, in particular, allow them to investigate 
and explain biological phenomena largely without having to apply quantitative 
or computational methods. 

This general qualitative strategy has been quite successful for explaining a 
wide range of biological phenomena, but as increasing amounts of information 
about molecular processes are collected, biologists are getting a clearer idea of 
the contexts in which the underlying assumptions may not be justified. In these 
contexts alternative strategies may be of help in the project of discovering 
mechanisms in order to explain biological phenomena. 

3.2. Strategies of systems biology 

How do strategies in systems biology relate to and interact with traditional 
experimental research? Instead of analyzing detailed case studies, I will confine 
myself here to some general characteristics. I will discuss three different ways 
in which systems biologists address the complexity of biological processes: 
small models, large models, and network approaches. While the first two are 
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usually subsumed under the label of 'bottom up,' the third might be 
considered a case of 'top down modeling.' 

3.2.1. Small models 

Systems biologists sometimes use computational approaches to investigate the 
same mechanisms that are also studied by experimentalists. That is, they focus 
on an isolated phenomenon and create a mathematical model that comprises 
only those components that are thought to be relevant for the phenomenon. 
The motivation to build and study such a model often lies in the observation 
that the system shows puzzling or otherwise interesting dynamic behavior, 
such as bistability or oscillations. The resulting models are relatively coarse-
grained and do not attempt to incorporate all known molecular details. Small 
models are used when the knowledge about the mechanism is incomplete and 
not much quantitative data are available. The aim is to achieve a better 
understanding of the dynamics of the mechanism and to show that it is possible 
to reproduce its qualitative behavior based on the most relevant causal 
interactions. A failure to reproduce general behavior points to important 
pieces that are missing in the description of the mechanism. Examples are 
models of the core mechanism of the circadian clock, of individual stages of the 
cell cycle, or of small signaling systems such as the p53 or NF-κB networks. 

How can we understand the approach of building small models within the 
general framework of heuristics? First of all, this approach is based on the 
strategy of decomposition and localization that is also used by experimentalists 
because it focuses on a specific phenomenon and aims at an explanation in 
terms of the activities and interactions of individual components. However, the 
underlying mechanism is not described verbally or in a cartoon model, but with 
a formal mathematical language. This allows systems biologists to deal with 
more sophisticated and non-sequential forms of organization, such as feedback 
loops or cross-talk between pathways. Using a model, they achieve a 
'recomposition' of the mechanism that can explain aspects of behavior that 
may be hidden in the qualitative accounts of experimental biologists. 
Moreover, a quantitative framework can describe the kinetics of molecular 
processes, sometimes also their distribution in space, and thereby go beyond 
the purely qualitative understanding of a mechanism as a chain of discrete 
signaling steps. In this way, inconsistencies in biologists' intuitive reasoning 
about mechanisms can be uncovered. In summary, building small models 
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allows systems biologists to overcome some of the more specific biases of the 
traditional approach. The power of this approach relies on the extended 
cognitive abilities provided by computational modeling. 

But an increase in power does not necessarily mean that bias is reduced: 
models always introduce assumptions of their own. The construction of a 
model is never fully determined by data or underlying theories alone, but relies 
on a number of often very pragmatic choices (see Morgan and Morrison 1999). 
This is particularly obvious in the case of small models. First, as already 
mentioned, these models usually skip a lot of molecular detail. This is done 
partly because more specific information is simply lacking, but also with the 
aim to restrict the number of undetermined parameters. If a model contains 
more free parameters than can be determined by available data, the modeling 
problem is not well-constrained and the results based on this model will not 
necessarily be meaningful. Therefore, components of small models can often 
not be directly assigned to particular molecular players, but lump together the 
net influence of several causal factors. Second, while modelers make use of 
underlying biochemical principles, they commonly do so in the form of highly 
idealized reaction schemes, such as the law of mass action or Michaelis-Menten 
kinetics. Furthermore, most models are expressed in the form of ordinary 
differential equations (ODEs) and therefore neglect spatial effects by assuming 
that all reacting molecules are well-mixed. All these idealizations and 
assumptions are introduced in order to keep the model manageable and useful 
as a heuristic tool. In this context, systems biologists usually do not merely aim 
at computational tractability, but also demand that the simulations of a model 
can be followed and eventually comprehended, even if the results are 
counterintuitive. Thus the 'human factor' substantially shapes the modeling 
strategy, even if some of the cognitive procedures are replaced or extended by 
algorithmic procedures. 

Systems biologists directly build on the findings of molecular biology, and 
they are interested in the solution of the same epistemic puzzle of how a 
mechanism works and produces the phenomenon of interest. Yet, they 
propose a modified strategy for solving this puzzle by introducing 
computational methods and going beyond the qualitative schemes proposed by 
experimental biologists. Describing a phenomenon in quantitative terms and 
hypothetically recomposing the underlying causal structure while taking into 
account specific physical and biochemical constraints, allows systems 
biologists to detect discrepancies between candidate mechanisms and reality 
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that might otherwise go unnoticed. However, in order to be powerful as 
heuristics, small models rely on, at times crude, idealizations. For this reason, 
experimentalists might reject such models as ‘distortions’ and consider the 
claims made by systems biologists as irrelevant to the plausibility of their 
proposals. 

3.2.2. Large models 

In areas where detailed knowledge about underlying causal structures has been 
accumulated, systems biologists sometimes attempt to build larger and more 
realistic models. A model of this kind is usually not restricted to one single 
phenomenon, but spans several interconnected processes that before were 
investigated separately. Examples are the comprehensive model of cell cycle 
regulation in budding yeast (Chen et al. 2004) and, more recently, the whole-
cell model of Mycoplasma genitalium (Karr et al. 2011). The aim of such large 
scale modeling projects is often to check the sufficiency and consistency of 
existing explanatory schemes. Here is how the group behind the cell cycle 
regulation model describe the rationale behind their project: 

For complex, interconnected networks (…) it is impossible to anticipate 
all the consequences of multiple mutations by undisciplined, “hand-
waving” explanations. To be certain of the sufficiency and consistency 
of the mechanism, we must create a well-defined mathematical 
representation of the molecular interactions and demonstrate that the 
model fits all (or most) of the relevant data. (Chen et al. 2004, p. 3858-
3859) 

This confirms the basic idea that computational approaches are used to reduce 
the influence of 'undisciplined' human reasoning.  Aside from overcoming the 
limitations of qualitative and sequential reasoning, large models also have the 
potential to correct for biases that decomposition and localization introduce at 
a higher level. Differently from the small models discussed in the previous 
section, they take into account the interplay between parts that are usually 
studied as separate, quasi-independent modules, thus recomposing the system 
as a collection of integrated mechanisms. Studying such models, systems 
biologists sometimes discover unexpected behavior at the interface between 
conceptually separated mechanisms that can subsequently be investigated 
more thoroughly by experimental means. Karr et al., for example, found that 



                                              Heuristic Strategies in Systems Biology                                         11 

 

the length of the cell cycle in simulations of their whole-cell model is subject to 
an 'emergent' regulation that can be understood only when taking into 
account the build-up and depletion of the pool of nucleotides. 

Large models are thus potentially very useful tools for aiding biologists in 
the development and correction of comprehensive accounts of integrated 
cellular systems. Nevertheless, they are far from being automatized and 
unbiased tools to check proposed mechanistic schemes. As in the case of small 
models, there is no one-to-one translation from wiring diagram to 
mathematical description. Moreover, the problem of having to specify many 
free parameters is usually aggravated as the size of the model increases. The 
amount and the right kind of empirical data that would be needed to accurately 
determine the free parameters is often not available, and systems biologists 
have to apply all kinds of tricks to keep the modeling problem well-
constrained. Apart from the usual idealizations that were already discussed 
above, they are often forced to introduce strong assumptions about basic 
organizational features of the system under study. Karr et al., for instance, 
build their whole-cell model from smaller models that are assumed to be quasi-
independent: 

Because biological systems are modular, cells can be modeled by the 
following: (1) dividing cells into functional processes; (2) independently 
modeling each process on a short timescale; and (3) integrating process 
sub-models at longer timescales. (Karr et al., 2012, p. 399) 

However, they do not provide a justification for the assumption of modularity, 
nor for their particular choice of using a 1s timescale to model the processes 
independently. This is not to deny the role that large-scale models can play in 
testing mechanistic models, but in order to properly assess their value, it is 
important to be be realistic about their inherent limitations. The title of Karr et 
al.'s article (“A Whole-Cell Computational Model Predicts Phenotype from 
Genotype”) suggests that the main goal of a large modeling project consists in 
successfully predicting or explaining cellular behavior based on the known 
underlying molecular structure. In the article itself, however, the authors 
emphasize the value of the model as a tool for discovery: 

[E]experimental analysis directed by model predictions identified 
previously undetected kinetic parameters and biological functions. We 
conclude that comprehensive whole-cell models can be used to facilitate 
biological discovery. (Karr et al. 20012, 389) 
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3.2.3. Network approaches 

The small and large models discussed above are still committed to the 
decompositional strategy that also guides the traditional experimental 
approaches. They rely on the same general perspective of functional 
modularity, even though they introduce different strategies to tackle 
complexity within the modules they are studying. However, the system-wide 
study of the architecture of living organisms, enabled by the various ‘omics’ 
projects of data collection, suggests that underlying many of the behaviors of 
biological systems are large networks of interacting components that seem to 
go far beyond the simple schemes of sequential or modular organization with 
which human cognition feels comfortable. It is not obvious whether the 
strategies discussed so far can simply be scaled up to this level: 

[M]ost biological characteristics arise from complex interactions 
between the cell’s numerous constituents, such as proteins, DNA, RNA 
and small molecules. Therefore, a key challenge for biology in the 
twenty-first century is to understand the structure and the dynamics of 
the complex intercellular web of interactions that contribute to the 
structure and function of a living cell. (Baraba ́si and Oltvai, 2004, p. 
101) 

Many systems biologists believe that additional conceptual tools, in particular 
the tools of network theory, are necessary in order to understand biological 
systems at larger scales. 

Network theory was developed in the 1930s, largely within the social 
sciences. It became more widespread in its applications when connections with 
mathematics, especially graph theory, were established in the 1950s. The basic 
idea is to represent a system, in a very abstract way, as a series of nodes that are 
connected by links standing for pairwise interactions or relationships. One of 
the aims of the theory is to find quantitative measures of network properties in 
order to classify different types of networks. Network theory gained 
considerable popularity across the scientific community after it was shown 
around the turn of the millennium that networks as different as the world wide 
web, electrical power grids, and metabolic networks share some unexpected 
features, such as the property of being scale-free (Jeong et al., 2000). If a 
network is completely random, most nodes have roughly the same number of 
links, or degree. In scale-free networks, by contrast, the degree distribution 
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follows a power law. This means that most nodes have only very few links, while 
there are a few nodes, called ‘hubs,’ that are highly connected. The fact that 
diverse types of networks share this non-random property led many scientists, 
and notably biologists, to expect that the general concepts of network theory 
had the potential to reveal deep underlying principles and might increase our 
understanding of large complex systems (Keller, 2005). 

The study of universal properties of networks, however, did not turn out to 
be as fruitful as expected in biology. Nevertheless, many systems biologists 
hope that more specific network approaches, that elaborate on concepts from 
network theory, will lead to important progress in the study of complex 
biological systems: 

By itself, the fact that a network has scale-free properties is of limited 
use to biologists. Power laws occur very widely in nature and can have 
many different mechanistic origins. If we wish to obtain testable 
biological insights, we must probe further into the substructure of the 
network. (Bray 2003, 1865) 

One way to gain insight about network substructure is the approach of network 
motifs, developed mainly by the group of Uri Alon at the Weizman Institute in 
Tel Aviv. He describes the aim of his work as follows: 

Our goal will be to define understandable patterns of connections that 
serve as building blocks of the network. Ideally, we would like to 
understand the dynamics of the entire network based on the dynamics of 
the individual building blocks. (Alon, 2007, p. 27) 

On this view, networks are not unfathomable assemblages of interconnected 
nodes, but consist of substructures that are situated somewhere between the 
level of the single node and the level of the whole network. These building 
blocks reveal themselves through recurring patterns of connectivity, or 
‘motifs.’ The key idea behind the search for motifs in a network might be called 
a ‘reverse engineering’ strategy. The goal is not to determine the structure of 
molecular interactions underlying a particular behavior as in the approaches 
discussed in the previous sections. Instead, one starts with the structure of the 
whole network and tries to make inferences on possible function. The search 
for motifs ideally begins with a complete description of the network’s topology, 
that is, a map containing all the nodes and edges. Afterwards one applies a 
criterion of statistical significance to identify recurring patterns within 
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subgraphs of the network. In order to find such a criterion, the network under 
study is compared to a computer-generated ensemble of randomized networks. 
Network motifs are those patterns of connections that are found much more 
often in the real network than in the randomized networks. Their 
overrepresentation suggests that they are biologically meaningful and might 
play specific roles in the network. Alon's group has shown that there are a few 
types of motifs, such as the autoregulation motif or the feed-forward motif, that 
are highly significantly enriched in biological networks compared to random 
networks. Detailed mathematical analysis of individual motifs can suggest 
possible functions which are typically understood in analogy with signal-
processing elements known from electrical engineering. A further step 
consists in investigating how the different motifs are integrated within the 
whole network. For the case of the sensory transcriptional network of the 
bacterium E. coli, Alon's group finds a relatively simple layer structure that 
suggests to think of the network as a kind of computer that consists of 
integrated signal-processing units: “Overall, the rather simple way in which the 
network motifs are integrated makes it possible to understand the dynamics of 
each motif separately, even when it is embedded within larger patterns” (Alon, 
2007, p. 90). 

Differently from the modeling strategies discussed before, the network 
motif approach does not apply the heuristic of decomposition and localization. 
Even though the aim is ultimately to explain the behavior of a complex system, 
this behavior does not directly guide the investigation. Instead, the first step is 
to represent the structure of the complete system topologically and to look for 
peculiarities in this structure. But just as in the case of decomposition and 
localization, also here the success of the strategy relies on several assumptions 
about the system. The various criticisms that have been put forward against the 
idea of network motifs raise the question of whether the simple structures 
found in network representations point to biologically relevant features or are 
instead artifacts of our representational tools and the need to bring 
overwhelmingly complex systems within the conceptual grasp of the human 
mind. In particular, the criticisms reveal that the technical assumptions 
underlying the network motif approach are inextricably linked with the way the 
underlying biological system is conceived and represented. As pointed out by 
Artzy-Randrup et al. (2004), for example, the choice of randomized networks 
that serve as a null-model for motif detection makes implicit assumptions about 
the process of network evolution and has a significant effect on the results. 
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Solé & Valverde (2006, p. 419) go further in this direction, calling network 
motifs “spandrels of cellular complexity,” thereby alluding to the famous 
critique of the adaptationist program by Gould & Lewontin (1979). Just as 
evolutionary biologists sometimes get off target when trying to devise an 
adaptive explanation for every seemingly functional trait of an organism, 
systems biologists may be fooled by prematurely equating statistical with 
functional significance in their molecular data. 

In summary, the approach of network motifs shows that there are 
alternative strategies to the study of complex systems that do not presuppose a 
functional decomposition. However, even though the application of an 
automatic statistical procedure seems at first glance as the hallmark of an 
unbiased approach, one has to take into account that the biological 
interpretation of the results depends on various assumptions that reveal its 
heuristic nature. 

4. Conclusion 

In this short overview I have tried to show some general characteristics of 
different computational approaches in systems biology. The epistemic problem 
of biologists can often be described as a search for mechanisms that explain 
phenomena of interest. Heuristics are strategies that facilitate these tasks of 
searching and explaining. However, they are not error-proof algorithms 
guaranteeing a correct solution to the problem. The 'human factor' enters in 
the form of certain assumptions about organizational features of system under 
study that are needed to break down the complexity of the epistemic task. 
Experimentalists are mostly concerned with the problem of search, and one 
might think that computational models are used to understand the dynamics of 
the mechanisms once their structural features have been identified. As we have 
seen, however, computational models are often used to engage in the problem 
of search as well. They are able to facilitate the discovery of mechanisms by 
overcoming some of the limitations of the traditional approach. However, they 
can only be efficient by introducing heuristic assumptions of their own. 
Modeling is always based on a number of pragmatic choices and idealizations 
that are made mainly in the interest of tractability. One might say that an 
advantage of computational approaches is that it forces modelers to make all of 
their assumptions explicit. However, as we have seen in the discussion of 
network motifs, the opposite risk also exists: biases are hidden because an 
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approach has the characteristics of an automatized procedure. Even though 
computational power substantially extends our cognitive abilities and allows us 
to overcome some of the biases of unaided cognition, the assessment of 
whether a particular method is appropriate in a given context and whether its 
assumptions are justified is left to us. 

To conclude, the human factor remains a substantial and necessary 
ingredient of biological research. Generally speaking, the aim of scientists 
should not be to free their methods from bias, but to ensure that there are good 
mechanisms for error-detection and correction. Pursuing alternative strategies 
in parallel seems an efficient way of detecting bias, as long as scientists are 
ready to acknowledge the limitations of their own approaches and to appreciate 
the potential strengths of those of others. 
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